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Microscopic Analysis of Clausius�Duhem Processes
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Given a thermodynamic process which carries a system from one equilibrium
state to another, we construct a quantity whose average, over an ensemble of
microscopic realizations of the process, depends only on these end states, even
if at intermediate times the system is out of equilibrium. This result (1) can be
used to express the entropy difference between two equilibrium states in terms
of an irreversible process connecting them, (2) leads to two statistical statements
of the Clausius�Duhem inequality, and (3) can be generalized to situations in
which the system begins and�or ends in nonequilibrium states.

KEY WORDS: Irreversible processes.

The Clausius�Duhem inequality of classical thermodynamics��a statement
of the Second Law��applies to thermodynamic processes during which a
system evolves from one equilibrium state (A) to another (B). It asserts
that the integrated heat absorbed by the system, divided by the tem-
perature at which that heat is absorbed, is bounded from above by the net
change in the entropy of the system:

|
B

A

dQ
T

�2S#SB&SA (1)

By ``thermodynamic process'', we have in mind a situation in which the
system is brought into thermal contact with a sequence of heat reservoirs
at different temperatures, one at a time, while one or more external
parameters of the system are varied with time (see Fig. 1); the denominator
in Eq. (1) denotes the temperature of the reservoir from which the system
absorbs a quantity of heat dQ. In general, the process is irreversible: it is
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Fig. 1. A schematic representation of the sort of thermodynamic process considered in this
paper. The system of interest here is a gas inside a container, closed off at one end by a
movable piston. The position of the piston is our externally controlled parameter, *. The three
``heat baths'' are simply objects with heat capacities much greater than that of the gas. The
system of interest is brought into thermal contact with these baths, one at a time, e.g., as
depicted by the filament connecting the bath at temperature T2 to the container of gas. At the
same time, * is varied externally.

carried out over a finite time with a finite number of reservoirs, and the
system evolves, from A to B, through a sequence of non-equilibrium inter-
mediate states.

The aim of the present paper is a classical, microscopic analysis of
such ``Clausius�Duhem'' processes, explicitly accounting for all degrees of
freedom involved. This analysis will follow a statistical approach: we will
consider an ensemble of microscopic realizations of the thermodynamic
process. Each realization (described by a trajectory specifying the evolution
of all the degrees of freedom which make up the system of interest and
reservoirs) represents a possible ``microscopic history,'' consistent with the
macroscopic prescription for carrying out the thermodynamic process.

A statistical ensemble of realizations implies fluctuations��from one
realization to another��of various quantities of physical interest. In taking
a microscopic approach, therefore, we will be interested in the statistical
distribution (over the ensemble of microscopic histories) of values of quan-
tities such as �B

A dQ�T. Working with the assumption that the system of
interest begins and ends in equilibrium states (A � B), we will construct a
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quantity whose average, over the ensemble of realizations, depends only on
those two states, and not on the intermediate evolution of the system. This
result, Eq. (9) below��the central result of this paper��is valid even if the
system is driven far from equilibrium at intermediate times. We will argue
that this result can be viewed as the generalization��to irreversible pro-
cesses of the well-known identity which relates 2S to an arbitrary reversible
process from A to B (Eq. (10)). As we will show, the central result of this
paper allows one to express 2S in terms of an arbitrary irreversible process
from A to B (Eq. (12)). We will also show that Eq. (9) immediately implies
two inequalities which are closely related to the Clausius�Duhem
inequality. In particular, Eq. (16) places a tight upper bound on the fre-
quency with which finite-size violations of the Clausius�Duhem inequality
do occasionally occur. We will finally generalize these results to processes
in which the system of interest begins and�or ends in nonequilibrium
statistical states.

In the spirit (and level of rigor) of Gibbs, (1) we will work with the
following quite general picture. The ``system of interest'' is a closed, finite
system with a single external parameter, *. Additionally, we assume the
presence of N other closed, finite systems, which will play the role of heat
reservoirs. We will refer to these as ``baths,'' and assume that they have
been prepared at temperatures T1 , T2 ,..., TN . Our thermodynamic process
then consists of a sequence of steps during which the system of interest is
placed in thermal contact with the baths, one at a time, while the value of
* is varied along a pre-determined path *(t), over a time interval 0�t�{.
Let *A#*(0) and *B#*({) denote the initial and final parameter values,
and let n(t) identify the bath with which the system is in contact at time t.
The functions *(t) and n(t) embody the macroscopic instructions (the
``protocol'') which specify the thermodynamic process.

For any parameter value * and temperature T, there exists an equi-
librium state (*, T ) of the system of interest, described at the microscopic
level by a canonical distribution in the phase space of the system. Through
most of the paper (up to Eq. (24)), we will restrict our attention to pro-
cesses for which the system begins (t=0) and ends (t={) in such equi-
librium states, denoted by A#(*A, T A) and B#(*B, T B), respectively. In
other words, we assume that the system of interest is prepared in equi-
librium: over the ensemble of realizations, the microscopic initial condi-
tions of the system are distributed canonically; and that, at the end of the
process, the system is once again described (statistically) by an equilibrium
distribution: the microscopic final conditions of the system of interest are
distributed canonically. Strictly speaking, these assumptions are mathe-
matically suspect: there exists (to my knowledge) no rigorous proof that a
canonical ensemble can be achieved in a finite time, with finite resources.
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Thus, one cannot say with certainty that there exist physically realizable
methods for preparing a system in a canonical ensemble; or that, given a
system initially in equilibrium, there exist processes which carry that system
to a different equilibrium state in a finite time. However, it is a widely held
prejudice that such processes do exist in Nature, and that the canonical
ensemble is the appropriate statistical representation for a closed system in
thermal equilibrium. We will therefore adopt the point of view that it is a
legitimate exercise to assume initial and final equilibrium, and to explore
the consequences of these (seemingly reasonable) assumptions, without
concerning ourselves here with the separate problem of establishing the
validity of these assumptions from first principles. Later, as mentioned, we
will generalize to nonequilibrium initial and final states.

We assume Hamiltonian evolution at the microscopic level. Let z
denote a point in the phase space of the system of interest��specifying, e.g.,
the positions and momenta of all its constituent particles��and let zn

denote a point in the phase space of the nth bath. Let y=(z, z1 ,..., zN) then
specify the instantaneous state of all degrees of freedom involved. Evolution in
the full phase space (y-space) is governed by a time-dependent Hamiltonian

H(y, t)=H*(t)(z)+ :
N

n=1

H b
n(zn)+ :

N

n=1

$n, n(t) h int
n (z, zn) (2)

Here, H*(z) is a Hamiltonian describing the system of interest, for a
parameter value *; H b

n is the Hamiltonian for the nth bath; and h int
n couples

the system of interest to that bath.2 H(y, t) is (essentially) the most general
classical Hamiltonian describing a system of interest, with a specified exter-
nal-parametric time dependence *(t), coupled to N other systems, one at a
time. Once the initial conditions are fully specified, Hamilton's equations
uniquely determine the evolution of all degrees of freedom.

Let us consider a single realization of the thermodynamic process,
described by a trajectory y(t) evolving under Hamilton's equations from
some initial conditions y0#y(0), and ending at y{#y({). Let E 0 and E {

denote, respectively, the initial and final internal energies of the system of
interest, and let 2En denote the net change in the internal energy of the n th
bath:

E0=H*A(z0), E {=H*B(z{), 2En=H b
n(z{

n)&H b
n(z0

n) (3)
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2 As usual, we take the interaction energies h int
n to be negligible in comparison with the other

terms in H. While this assumption does not enter explicit calculations, it allows us to view
the total energy of the system of interest and N baths as simply the sum of the internal
energies of these N+1 objects. The terms appearing in the First Law, dE=dW+dQ, are
then unambiguously defined.



Now define

7#
E {

T B&
E0

T A+ :
N

n=1

2En

Tn
(4)

where T A and T B are the temperatures corresponding to the initial and
final statistical states of the system of interest, and the Tn 's are the tem-
peratures at which the baths are prepared. Working with units in which
Boltzmann's constant kB=1, let us now compute (exp(&7)) , where
angular brackets signify an average over the statistical ensemble of realiza-
tions, i.e., ever the ensemble of trajectories y(t). For a given realization,
7 happens to depend only on the initial and final points of y(t): 7=
7(y0, y{). Since evolution in y-space is deterministic, we can formally
express the final conditions as a function of the initial conditions, y{=y{(y0),
and then compute the desired average over realizations, by integrating over
the distribution of initial conditions, f (y0):

(exp(&7)) =| dy0 f (y0) exp[&7(y0, y{(y0))] (5)

By our assumptions regarding initial conditions, f (y0) is a product of
canonical distributions, hence we have

(exp(&7))=
1

NZA | dy0 exp _&
E 0

T A& :
N

n=1

H b
n(z0

n)
Tn & exp(&7)

=
1

NZA | dy{ exp _&
E {

T B& :
N

n=1

H b
n(z{

n)
Tn &

=
ZB

ZA=exp \&
F B

T B+
F A

T A+ (6)

Here, ZA and ZB denote partition functions associated with equilibrium
states of the system of interest, and F A and F B denote free energies:

F i=&T i ln Zi=&T i ln | dz exp[&H*i (z)�T i], i=A, B (7)

N is the product of the partition functions for the N baths, each corre-
sponding to the temperature at which that bath was prepared: N=
>N

n=1 � dzn exp[&H b
n(zn)�Tn]. In going from the first to the second line in
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Eq. (6), we have: (1) used Eq. (4) to rewrite the integrand as an explicit
function of y{ alone, and (2) changed the variables of integration from y0

to y {. By Liouville's theorem, the Jacobian |�y{��y0|=1.
At this point, Eq. (6) is just a statement about energy exchange among

a number of finite, closed systems, one of which has been singled out as
being ``of interest.'' Its validity does not depend on the relative sizes of these
objects. To establish contact with more familiar results, let us now imagine
the limiting case in which the heat capacities of the N baths become
arbitrarily greater than that of the system of interest. The baths then
assume the role of ``infinite'' heat reservoirs, and we can rewrite the term
�n 2En �Tn in Eq. (4) as &�B

A dQ�T:

7=
E {

T B&
E0

T A&|
B

A

dQ
T

(8)

(During the time interval over which the system of interest is coupled to
the n'th bath, the heat absorbed by the system is equal to the energy lost
by that bath, so the value of � dQ�T over that interval of time is simply
&2En�Tn .) Eq. (6) now becomes:

�exp _&2 \E
T ++|

B

A

dQ
T &�=exp _&2 \F

T +& (9)

using the shorthand notation 2(E�T )#E{�T B&E0�T A and 2(F�T )#
F B�T B&F A�T A. This is the central result of this paper. We add here that
a result equivalent to Eq. (9) has been derived independently by Gavin E.
Crooks(2)��using stochastic, Markovian dynamics to model the evolution
of the system of interest��and that this result has been shown to be
closely related to the Fluctuation Theorem for non-equilibrium steady
states.(3, 4, 7)

Since internal energies are quantities associated with specific micro-
scopic states (i.e., points in phase space), the exact values of E0, E { and
�B

A dQ�T (=&�n 2En �Tn) differ from one realization of the thermodynamic
process to the next. By contrast, the free energies F A and F B are associated
with canonical ensembles of microstates of the system of interest. Thus,
7=2(E�T )&�B

A dQ�T is a linear combination of quantities (E0, E {, the
2En 's) which vary in value from one realization to the next, and Eq. (9)
makes an assertion regarding the statistical distribution of values of 7: it
claims that the average of exp(&7), over the ensemble of realizations, is
equal to exp[&2(F�T )], which depends only on the equilibrium states A
and B, and not on the sequence of (nonequilibrium) statistical states
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through which the system evolves in getting from A to B! Now, for macro-
scopic, reversible processes, it is well known that3

|
B

A

dQ�
T

=2S� #S� B&S� A (REVERSIBLE), (10)

regardless of the path (through equilibrium state space) taken from A to B.
Since Eq. (10) can be written, at the macroscopic level, as 7� =2(F� �T )
(because F� =E� &S� T ), our central result [(e&7)=e&2(F�T )] may be
viewed as the microscopic extension of Eq. (10) to irreversible processes.
Moreover, and somewhat surprisingly, this result is valid regardless of how
far the system is driven away from equilibrium between the initial and final
times: no matter how violent the process, Eq. (9) will hold, provided the
system begins in A and ends in B.

For a given equilibrium state, the microscopic expressions for free
energy, average internal energy, and entropy satisfy F=E� &ST, where the
overbar denotes an equilibrium (canonical) average. Thus, the quantity
which we have called 2(F�T ) can be written as:

2 \F
T +=

E� B

T B&
E� A

T A&2S=
(E {)

T B &
(E0)

T A &2S (11)

where the second equality follows from our assumptions regarding the
initial and final distributions of microstates. Combining this with Eq. (9)
gives:

2S=
(E {)

T B &
(E 0)

T A +ln �exp _&2 \E
T ++|

B

A

dQ
T &� (12)

This result expresses the entropy difference 2S=SB&S A in terms of an
arbitrary��in general irreversible��thermodynamic process from A to B. In
principle, by repeatedly measuring E0, E {, and �B

A dQ�T for independent
realizations of such a process, we can construct the averages appearing in
Eq. (12), and therefore compute the value of 2S.4
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3 Since quantities such as heat, entropy, etc., appear in both thermodynamics and statistical
mechanics, and since these are (formally) separate theories, it is useful to distinguish between
the two. Here and below, we use a carat (e.g. dQ� ) to denote that a certain quantity is to be
understood in the macroscopic (thermodynamic) context, rather than in the microscopic
(statistical) context.

4 Note that Eq. (12) generally involves averaging over infinitely many finite-time realizations,
in contrast to Eq. (10), which gives 2S in terms of a single realization of infinite duration.



We now derive, as a byproduct of Eq. (9), two inequalities, one old and
one new (Eqs. (14) and (16) below), which are closely related to the Clausius�
Duhem inequality. By the convexity of the function ex, Eq. (9) implies

&
(E {)

T B +
(E0)

T A +�|
B

A

dQ
T ��&

F B

T B+
F A

T A (13)

Once again invoking the identity F=E� &ST, along with our assumptions
of initial and final equilibria, (E 0) =E� A and (E {)=E� B, we can rewrite
Eq. (13) as:

�|
B

A

dQ
T ��2S (14)

This result says, effectively, that the Clausius�Duhem inequality is satisfied
``on average,'' where the average is taken over an ensemble of microscopic
realizations of a given thermodynamic process. This still leaves open the
possibility that there exist individual realizations for which the inequality is
violated. We will now use Eq. (9) to investigate the frequency of occurrence
of such violations.

Macroscopically, the Clausius�Duhem inequality can be written as
2(E� �T )&�B

A dQ� �T�2(F� �T ), or simply 7� �2(F� �T ). Thus, thermodynamics
tells us that we will ``never'' observe a value of 7� below 2(F� �T ). To
investigate the microscopic validity of this statement, let p(7) denote the
distribution of values of 7 corresponding to the statistical ensemble of
microscopic realizations of a given thermodynamic process. Then the prob-
ability of observing a value of 7 no greater than some fixed value 70 is
just: Prob[7�70]=�70

&� d7 p(7). But Eq. (9) tells us that �+�
&� pe&7=

e&2(F�T ). When we combine this with the inequality chain

|
+�

&�
pe&7�|

70

&�
pe&7�e&70 |

70

&�
p (15)

and take 70=2(F�T )&10 , where 10>0, we obtain

Prob[7�2(F�T )&10]�exp(&10 �kB) (16)

where we have explicitly put in the Boltzmann constant kB . Thus, the prob-
ability of observing a violation of the Clausius�Duhem inequality, by an amount
no less than 10 , is bounded from above by e&10 �kB. A macroscopic violation
would be one for which 10 �kB>>1, hence such violations are extremely rare:
the Clausius�Duhem inequality is ``never'' violated by a macroscopic amount.5
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thermodynamic process��and the Einstein�Boltzmann expression for microscopic fluctua-
tions of a system in equilibrium; see e.g. Ref. 5, Eq. (112.1).



The previous two paragraphs are by no means intended as a first-
principles derivation of the Second Law, as they assume��reasonably, but
without proof��canonical distributions. Indeed, it has long been known
(see, e.g. Ref. 1) that canonical ensembles imply inequalities such as
Eq. (14), stating that the Second Law is not violated ``on average.''
(However, I believe that the upper bound given by Eq. (16) is a new
result.) The aim here is rather to reveal the close connection between the
central result of this paper (Eq. (9)) and the Clausius�Duhem inequality.

While Eq. (9) is valid for any thermodynamic process which carries a
system from A to B, it is instructive to ponder limiting cases of such pro-
cesses. We will now consider three examples, for which we will be able to
verify Eq. (9) directly (without invoking Liouville's theorem), by solving
explicitly for 7.

The first example involves bringing a system��initially at a tempera-
ture T A��into contact with a reservoir at temperature T B, and allowing the
system to relax to the temperature of the reservoir. Let us therefore imagine
that, at time t=0, we start with the system in the equilibrium state
A=(*, T A). Then, at t=0+ (``immediately after t=0''), we place the
system in thermal contact with a reservoir at temperature T B, and let the
two equilibrate. We assume the reservoir to have the usual property of
``infinite'' heat capacity, so that the system of interest relaxes to the equi-
librium state B=(*, T B). In this situation, we get �B

A dQ�T=(1�T B)_
�B

A dQ=(E {&E 0)�T B��where the initial and final energies are given by
E0=H*(z0) and E {=H*(z{)��from which it follows that

7=
E {

T B&
E0

T A&
E {&E 0

T B =
H*(z0)

T B &
H*(z0)

T A (17)

We now average over realizations by integrating over the distribution of
initial conditions to get:

(exp(&7)) =
1

ZA | dz0 exp _&
H*(z0)

T A & exp(&7) (18)

=
1

ZA | dz0 exp _&
H*(z0)

T B & (19)

=
ZB

ZA=exp _&2 \F
T+& (20)

in agreement with Eq. (9).
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The second example involves making a sudden change in the value of
the external parameter, *A � *B, and then letting the system (assumed in
contact at all times with a reservoir at temperature T ) relax to the equi-
librium state corresponding to the new parameter value. Thus, we begin
(t=0) with the system in equilibrium state A=(*A, T ), coupled to a reser-
voir at temperature T; a moment later (t=0+), we instantaneously change
the parameter value from *A to *B, and then we allow the system to relax
to the equilibrium state B=(*B, T ). The initial energy of the system is
given by E0=H*A(z0); the energy just after * is switched to *B is given
by E0+=H*B(z0); and the final energy is E {=H*B(z{). Then �B

A dQ�T=
(E {&E 0+ )�T, and

7=
E {

T
&

E 0

T
&

E {&E 0+

T
=

H*B(z0)
T

&
H*A(z0)

T
(21)

from which we again get

(exp(&7))=
1

ZA | dz0 exp _&
H*A(z0)

T & exp(&7)

=exp _&2 \F
T +& (22)

The third example combines these two, and gives us a specific
prescription for carrying a system from one arbitrary equilibrium state to
another. We start with the system in state A=(*A, T A). Then we instan-
taneously switch the parameter value to *B, after which we place the system
in contact with a reservoir at temperature T B, and allow it to relax to the
state B=(*B, T B). Following steps as above, we get 7=H*B(z0)�T B&
H*A(z0)T A, from which it once more immediately follows that (e&7) =
e&2(F�T ).

In each of these examples, a convenient cancellation of terms gave us
the value of 7 explicitly in terms of known functions of the initial condi-
tions of the system of interest (z0). For a more general thermodynamic pro-
cess, in which more reservoirs are involved and * changes at a finite rate,
this is not the case; if we wanted to compute 7 for a realization launched
from a known set of initial conditions, we would need to actually integrate
the equations of motion (in the full phase space) to get E { and �B

A dQ�T.
Let us now suppose that we prepare the system in state A=(*A, T ),

and we switch the parameter at an arbitrary finite rate from *A to *B
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(driving the system out of equilibrium), while keeping the system in thermal
contact with a reservoir at temperature T; at the end we hold * fixed at *B

and allow the system to relax to B=(*B, T ). In this situation, we have

|
B

A

dQ
T

=
1
T |

B

A
dQ=

1
T

(E {&E 0&W ) (23)

where W is the external work performed on the system by driving the
parameter. We thus have 7=W�T; and Eq. (9) reduces to the following
relationship between the work performed (during realizations of this non-
equilibrium process) and the free energy difference 2F#F B&F A:

�exp \&
W
T +�=exp \&

2F
T + (24)

Note the conditions for the validity of this result: there is only one heat
reservoir6 and its temperature must equal that at which the system is
initially prepared. Eq. (24) has recently been derived in a number of ways,
and confirmed in numerical experiments.(6)

We now generalize our analysis to the situation in which the system
of interest begins and ends in nonequilibrium statistical states. For
instance, we might prepare the system by heating it at one end and cooling
at another, until a steady-state thermal gradient is achieved. (The N baths,
however, are prepared in equilibrium, as before.) Whatever the method of
preparation, let \0(z) denote the statistical distribution of initial conditions
(of the system of interest) achieved by that preparation. Similarly, let \{(z)
denote the distribution of final conditions; this will of course depend on the
sequence of steps defining the thermodynamic process.

As before, a realization of the process is described by a microscopic
trajectory y(t), determined by the initial conditions, y0. For a given realiza-
tion, let us define

1#&ln \{(z{)+ln \0(z0)+ :
N

n=1

2En

Tn
(25)

and let us compute the average of exp(&1 ) over our ensemble of realizations:

(exp(&1 )) =
1

N | dy0 \0(z0) exp _& :
N

n=1

H b
n(z0

n)
Tn & exp(&1 )=1 (26)

following steps like those leading to Eq. (6).
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Since we were able to derive Eq. (14) from Eq. (9), it is natural to
wonder whether an interesting inequality can similarly be obtained from
Eq. (26). The convexity of ex in this case gives us &(1 )�0, or

( ln \{(z{))&( ln \0(z0))+�| dQ�T��0 (27)

Now note that &( ln \0(z0))=&� \0 ln \0=SG[\0], where the integra-
tion is over the phase space of the system of interest, and SG[\0]
represents the statistical (Gibbs) entropy associated with the initial statisti-
cal state of the system. Similarly, &( ln \{(z{)) =SG[\{]. Eq. (27) then
reads

�| dQ�T��SG[\{]&SG[\0]#2SG (28)

That is, the expectation value of � dQ�T is bounded from above by the net
change in the statistical entropy, SG , characterizing the initial and final
states of the system of interest. Note that in the case of an isolated system
(no heat baths), this inequality reduces to a trivial result, as both sides are
identically zero.

Eq. (28) is equivalent to the statement: (1) �0. Following a line of
reasoning like the one leading to Eq. (16), we can use Eq. (26) to place an
upper bound on the probability of observing a value of 1 no greater than
&10 :

Prob[1�&10]�e&10 �kB (29)

Thus, we will ``never'' observe a ``macroscopically negative'' value of 1.
Eqs. (26), (28) and (29) together constitute a generalization of Eqs. (9),
(14) and (16), to situations in which the system of interest begins and ends
in states not necessarily corresponding to thermal equilibrium.

A macroscopic, reversible process between two equilibrium states A
and B has the property that 2(E� �T )&�B

A dQ� �T=2(F� �T ) (Eq. (10)). The
central result of this paper is a microscopic, statistical generalization of this
result to irreversible processes between two such states: (e&2(E�T )+� B

A dQ�T)
=e&2(F�T ) (Eq. (9)), where the average is taken over an ensemble of
realizations of the process. In both cases, the right side of the equation
depends only on the states A and B, and not on the (equilibrium or non-
equilibrium) path connecting them. We have used Eq. (9) to derive an
expression for the entropy difference between two equilibrium states, in
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terms of an arbitrary (generally irreversible) thermodynamic process con-
necting them (Eq. (12)). We have also shown that Eq. (9) leads to statisti-
cal statements of the Clausius�Duhem inequality, in particular placing an
upper bound on the probability for observing violations of the Clausius�
Duhem inequality above an arbitrary threshold 10 (Eq. (16)). Finally, we
have extended this analysis to processes which begin and�or end out of
equilibrium.
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